Trig Derivatives Practice Solutions- 10/26/16

1. Evaluate $\frac{d}{d x} e^{x} \sin (x)$.

Solution: Let $f(x)=e^{x}$ and $g(x)=\sin (x)$, so $f^{\prime}(x)=e^{x}$ and $g^{\prime}(x)=\cos (x)$. Then we can use the product rule to get that $\frac{d}{d x} e^{x} \sin (x)=e^{x} \sin (x)+e^{x} \cos (x)=e^{x}(\sin (x)+\cos (x))$.
2. Evaluate $\frac{d^{2}}{d x^{2}} e^{x} \sin (x)$.

Solution: To take the second derivative of $e^{x} \sin (x)$, we just take the derivative of the derivative, which we already found in problem 1. Thus we want to find $\frac{d}{d x} e^{x}(\sin (x)+\cos (x))$. Let $f(x)=e^{x}$ and $g(x)=\sin (x)+\cos (x)$, then $f^{\prime}(x)=e^{x}$ and $g^{\prime}(x)=\cos (x)-\sin (x)$. Then using the product rule, we get $\frac{d^{2}}{d x^{2}} x^{x} \sin (x)=\frac{d}{d x} e^{x}(\sin (x)+\cos (x))=e^{x}(\sin (x)+\cos (x))+$ $e^{x}(\cos (x)-\sin (x))=2 e^{x} \cos (x)$.
3. Evaluate $\frac{d}{d x} \frac{x e^{x}}{\cos (x)}$.

Solution: Let $f(x)=x e^{x}$ and $g(x)=\cos (x)$. Then to find $f^{\prime}(x)$, we need to use the product rule, so let $z(x)=x$ and $q(x)=e^{x}$, so $z^{\prime}(x)=1$ and $q^{\prime}(x)=e^{x}$. Then using the product rule, we have $f^{\prime}(x)=e^{x}+e^{x}(x)=(x+1) e^{x}$. We also know that $g^{\prime}(x)=-\sin (x)$. Then using the quotient rule, we have that $\frac{d}{d x} \frac{x e^{x}}{\cos (x)}=\frac{(x+1) e^{x} \cos (x)-\left(-\sin (x) x e^{x}\right)}{\cos ^{2}(x)}=\frac{e^{x}((x+1) \cos (x)+x \sin (x))}{\cos ^{2}(x)}$.
4. Evaluate $\frac{d}{d x} \sin (x)$.

Solution: We could solve this in two different ways. We could realize that $\frac{\sin (x)}{\tan (x)}=\frac{\sin (x)}{\frac{\sin (x)}{\cos (x)}}=$ $\cos (x)$, so $\frac{d}{d x} \frac{\sin (x)}{\tan (x)}=\frac{d}{d x} \cos (x)=-\sin (x)$. If we didn't realize this, we could use the quotient rule. Let $f(x)=\sin (x)$ and $g(x)=\tan (x)$, so $f^{\prime}(x)=\cos (x)$ and $g^{\prime}(x)=\sec ^{2}(x)$. Then $\frac{d}{d x} \frac{\sin (x)}{\tan (x)}=\frac{\cos (x) \tan (x)-\sec ^{2}(x) \sin (x)}{\tan ^{2}(x)}=\frac{\sin (x)\left(1-\sec ^{2}(x)\right)}{\tan ^{2}(x)}=\frac{\left(1-\sec ^{2}(x)\right)(\cos (x))}{\tan (x)}=\frac{\left(1-\sec ^{2}(x)\right)\left(\cos ^{2}(x)\right)}{\sin (x)}=$ $\frac{\cos ^{2}-1}{\sin (x)}=\frac{-\sin ^{2}(x)}{\sin (x)}=-\sin (x)$. Note that we didn't need to simplify that all the way down I just did that to show that we get the same answer both ways. However, unless we say to simplify completely, it is fine to leave your answer as $\frac{\cos (x) \tan (x)-\sec ^{2}(x) \sin (x)}{\tan ^{2}(x)}$.
5. Evaluate $\frac{d}{d x} x \cot (x)$.

Solution: Let $f(x)=x$ and $g(x)=\cot (x)$. Then $f^{\prime}(x)=1$ and $g^{\prime}(x)=-\csc ^{2}(x)$ (we did this in class - if you don't remember how we got this, check the review page). Using the product rule, we get $\frac{d}{d x} x \cot (x)=1 \cdot \cot (x)+\left(-\csc ^{2}(x)\right) x=\cot (x)-x \csc ^{2}(x)$.
6. Evaluate $\frac{d}{d x} \csc (x)$.

Solution: We can think of this as $\frac{d}{d x} \frac{1}{\sin (x)}$. Let $f(x)=1$ and $g(x)=\sin (x)$, then $f^{\prime}(x)=0$ and $g^{\prime}(x)=\cos (x)$. Then using the quotient rule, we get $\frac{d}{d x} \csc (x)=\frac{0(\sin (x))-\cos (x)(1)}{\sin ^{2}(x)}=\frac{-\cos (x)}{\sin ^{2}(x)}=$ $-\frac{\cos (x)}{\sin (x)} \cdot \frac{1}{\sin (x)}=-\cot (x) \csc (x)$.

